Localization and the Toeplitz Algebra on the Bergman Space
نویسنده
چکیده
Let Tf denote the Toeplitz operator with symbol function f on the Bergman space La(B, dv) of the unit ball in C . It is a natural problem in the theory of Toeplitz operators to determine the norm closure of the set {Tf : f ∈ L∞(B, dv)} in B(La(B, dv)). We show that the norm closure of {Tf : f ∈ L∞(B, dv)} actually coincides with the Toeplitz algebra T , i.e., the C∗-algebra generated by {Tf : f ∈ L∞(B, dv)}. A key ingredient in the proof is the class of weakly localized operators recently introduced by Isralowitz, Mitkovski and Wick. Our approach simultaneously gives us the somewhat surprising result that T also coincides with the C∗-algebra generated by the class of weakly localized operators.
منابع مشابه
Toeplitz algebra and Hankel algebra on the harmonic Bergman space
In this paper we completely characterize compact Toeplitz operators on the harmonic Bergman space. By using this result we establish the short exact sequences associated with the Toeplitz algebra and the Hankel algebra. We show that the Fredholm index of each Fredholm operator in the Toeplitz algebra or the Hankel algebra is zero. 2002 Elsevier Science (USA). All rights reserved.
متن کاملA Double Commutant Relation in the Calkin Algebra on the Bergman Space
Let T be the Toeplitz algebra on the Bergman space La(B, dv) of the unit ball in C. We show that the image of T in the Calkin algebra satisfies the double commutant relation: π(T ) = {π(T )}′′. This is a surprising result, for it is the opposite of what happens in the Hardy-space case [16,17].
متن کاملOn the Essential Commutant of the Toeplitz Algebra on the Bergman Space
Let T be the C∗-algebra generated by the Toeplitz operators {Tf : f ∈ L∞(B, dv)} on the Bergman space of the unit ball. We show that the essential commutant of T equals {Tg : g ∈ VObdd}+K, where VObdd is the collection of bounded functions of vanishing oscillation on B and K denotes the collection of compact operators on La(B, dv).
متن کاملThe Berezin Transform on the Toeplitz Algebra
This paper studies the boundary behavior of the Berezin transform on the C∗-algebra generated by the analytic Toeplitz operators on the Bergman space.
متن کاملToeplitz Operators and Toeplitz Algebra with Symbols of Vanishing Oscillation
We study the C∗-algebra generated by Teoplitz operators with symbols of vanishing (mean) oscillation on the Bergman space of the unit ball. We show that the index calculation for Fredholm operators in this C∗-algebra can be easily and completely reduced to the classic case of Toeplitz operators with symbols that are continuous on the closed unit ball. Moreover, in addition to a number of other ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015